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Gillespie’s stochastic formulation: species and reaction notation

Consider N chemically active species                          each with population      in 
volume V

These species can interact via M types of unidirectional chemical reactions,
                           

⇤ � products
Si � products

Si + Sj � products (i ⇥= j)
2Si � products

Si + Sj + Sk � products (i ⇥= j ⇥= k ⇥= i)
Si + 2Sj � products (i ⇥= j)

3Si � products

Rµ (µ = 1, M)

Si (i = 1, N) Xi

For example
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Distinct reactant combinations

For each reaction type Rμ, let hμ denote the number of distinct molecular reactant 
combinations given that the system is in state                  

1
Xi

XiXj

Xi(Xi � 1)/2
XiXjXk

XiXj(Xj � 1)/2
Xi(Xi � 1)(Xi � 2)/6

⇥
Si

Si + Sj (i �= j)
2Si

Si + Sj + Sk (i �= j �= k �= i)
Si + 2Sj (i �= j)

3Si

Reactants for reaction Rμ Distinct reactant combinations hμ

(X1, . . . , XN )
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Assumption: for each reaction type Rμ, the average probability (over all distinct reactant 
combinations hμ) that a particular combination of reactant molecules in V will react in the 
next infinitesimal time interval dt  may be expressed in the form 

where cμ is a “reaction parameter” representing a “reaction probability per unit time”

Well-mixed requirement

 

Validity: Based on collision theory, the assumption can be justified if the reactive molecules 
are randomly distributed with a uniform distribution prior to each reaction

Hence, the stochastic formulation is valid for “well-mixed” systems in which nonreactive 
molecular collisions are much more frequent than inelastic reactive molecular collisions

cµdt

It then follows that the probability of a reaction of type       occurring in infinitesimal time 
interval                  is

Rµ

(X1, . . . , XN ) t

(t, t + dt)

with aµ � hµcµaµdt

given state                          at time   
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Reaction probability density function
We wish to simulate stochastic trajectories of the chemical system starting from 
given initial molecular populations based on the reaction probability density function
             such that 

P (⇥, µ)d⇥

denotes the probability that, given the state                           at time t,
the next reaction in V will occur in the infinitesimal time interval
                                 and will be an       reaction 

(X1, . . . , XN )

(t + �, t + � + d�) Rµ

P (⇥, µ)

This may be calculated as the product

           is the probability that, given state                          at time t, no reaction
will occur in time interval                    

(X1, . . . , XN )
(t, t + �)

P0(�)

aµd�           is the probability that,  given state                          at time          , an       reaction 
will occur in infinitesimal time interval 
                                 

Rµ
(t + �, t + � + d�)

t + �(X1, . . . , XN )

P (⇥, µ)d⇥ = P0(⇥) · aµd⇥
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Reaction probability density function

To find            note that the probability that no reaction will occur in infinitesimal time 
interval                     is given by        

P0(�)

Hence

(X1, . . . , XN )

(�, � + d�)

from which we deduce

P0(� + d�) = P0(�) · (1� a0d�)

P0(�) = exp(�a0�)

This yields the form of the desired
reaction probability density function

(µ = 1, . . . ,M)

(0 � � <⇥)

P (⇥, µ)d⇥

P (⇥, µ) = aµ · exp(�a0⇥)

a0 �
M�

µ=1

aµ1� a0d� with

given state                          at time   �
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Gillespie’s stochastic simulation algorithm: overview

Step 0 (Initialization): Set          , set the reaction parameters 
and the initial molecular populations                          and calculate 

Step 1 (Monte Carlo): generate a random reaction time and type            according to 
probability density function 

Step 2 (Update): advance    by   , update the molecular populations
to reflect the occurrence of one       reaction, update                         

Step 3 (Terminate): If                  or all reactants have been consumed (            )
then terminate, else go to Step 1 

(⇥, µ)
P (⇥, µ)

t = 0
(X1, . . . , XN )

(c1, . . . , cM )
(a1, . . . , aM )

�t (X1, . . . , XN )
Rµ (a1, . . . , aM )

t > tstop a0 = 0

Thursday, February 13, 14



Gillespie’s stochastic simulation algorithm: overview

D.T. Gillespie, J Comput Phys, 22, 403-434,1976
D.T. Gillespie, J Phys Chem, 81, 2340-2361, 1977

Step 0 (Initialization): Set          , set the reaction parameters 
and the initial molecular populations                          and calculate 

Step 1 (Monte Carlo): generate a random reaction time and type            according to 
probability density function 

Step 2 (Update): advance    by   , update the molecular populations
to reflect the occurrence of one       reaction, update                         

Step 3 (Terminate): If                  or all reactants have been consumed (            )
then terminate, else go to Step 1 

(⇥, µ)
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A standard “unit-interval uniform random number generator” produces a sample   
drawn from a uniform distribution on

We need to sample the two-variable probability density function                            

Implementing the Monte Carlo Step

Let’s figure out a way to use two calls to the standard random number generator 
to obtain one sample           drawn fromP (⇥, µ)

[0, 1]

(⇥, µ)

r

P (⇥, µ) = aµ · exp(�a0⇥)

P (⇥, µ)d⇥

(0 � � <⇥)

(µ = 1, . . . ,M)
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              is the probability that the next reaction will be an       reaction given that
it occurs at time 

Implementing the Monte Carlo Step

P (⇥, µ) = P1(⇥) · P2(µ|⇥)Let

                is the probability that the next reaction (irrespective of type) will occur in 
the infinitesimal time interval
P1(�)d�

(t + �, t + � + d�)

P2(µ|⇥) Rµ
�
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              is the probability that the next reaction will be an       reaction given that
it occurs at time 

Implementing the Monte Carlo Step

P (⇥, µ) = P1(⇥) · P2(µ|⇥)Let

                is the probability that the next reaction (irrespective of type) will occur in 
the infinitesimal time interval
P1(�)d�

(t + �, t + � + d�)

P2(µ|⇥) Rµ
�

P1(⇥) =
M�

µ=1

P (⇥, µ) = a0 exp(�a0⇥), (0 ⇥ ⇥ <⇤)

P2(µ|⇥) = P (⇥, µ)/P1(⇥) = aµ/a0, (µ = 1, . . . ,M)

P (⇥, µ) = aµ · exp(�a0⇥)
Recalling 

we find 
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Implementing the Monte Carlo Step

Generate random time    according to           and random reaction type     according to                 
              to obtain           distributed according to               

P1(�)�
P2(µ|⇥)

µ
(⇥, µ) P (⇥, µ)

Step 1a (pick the reaction time): generate a unit-interval uniformly distributed 
random number     and set r1

� = (1/a0) ln(1/r1)

Step 1b (pick the reaction type): generate a unit-interval uniformly distributed 
random number      and set    to be the integer for which r2 µ

µ�1�

⇥=1

a⇥ < r2a0 �
µ�

⇥=1

a⇥

D.T. Gillespie, J Comput Phys, 22, 403-434,1976
D.T. Gillespie, J Phys Chem, 81, 2340-2361, 1977
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Comparing deterministic and stochastic formulations

Deterministic formulation
• The concentration of each molecular species is uniform throughout the reaction volume 
• Concentrations vary continuously with time
• Each reaction is characterized by a “reaction rate constant”
• Fluctuation and correlation effects are neglected
• Valid in the dilute thermodynamic limit (i.e., when the number of molecules of each species 
and the reaction volume approach infinity such that molecular concentrations are finite, and not 
too large)

Stochastic formulation
• The molecules of each species are distributed randomly throughout the reaction 
volume with a uniform distribution 
• The population of each molecular species changes discretely as reactions occur
• Each reaction is characterized by a “reaction probability per unit time” 
• Fluctuation and correlation effects are included
• Valid for “well-mixed” systems (e.g., when elastic nonreactive molecular collisions 
vastly outnumber inelastic reactive molecular collisions)

The deterministic and stochastic formulations are equivalent in the thermodynamic limit 
D.T. Gillespie, J Comput Phys, 22, 403-434,1976
D.T. Gillespie, J Phys Chem, 81, 2340-2361, 1977
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Comparing reaction parameters to reaction rate constants

Consider a reaction of type      , for example the bimolecular reaction: 

Si + Sj � products (i ⇥= j)

Rµ

Suppose the stochastic formulation is described in terms of molecular populations 
and the deterministic formulation is described in terms of molecular concentrations

Xi

What is the relationship between the stochastic “reaction parameter”      and the more 
familiar deterministic “reaction rate constant”      ?

cµ
kµ

xi � Xi/V
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Recall that           represents the probability of a reaction of type        in the infinitesimal
time interval                   given populations                           at time 

Rµ
(X1, . . . , XN ) t(t, t + dt)

aµdt

For the reaction type in question, the number of distinct reactant combinations is
                      so we havehµ = XiXj

aµdt = hµcµdt = XiXjcµdt

Comparing reaction parameters to reaction rate constants

If we average over an ensemble of reaction volumes containing stochastically identical 
systems the average rate at which       reactions are occurring inside     is 

so the average reaction rate per unit volume expressed in terms of concentrations is

Rµ

�XiXjcµ⇥ = �XiXj⇥ cµ

�XiXj⇥ cµ/V = �xixj⇥V cµ

D.T. Gillespie, J Comput Phys, 22, 403-434,1976
D.T. Gillespie, J Phys Chem, 81, 2340-2361, 1977

V
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The reaction rate constant is conventionally defined to be the average reaction rate per unit 
volume divided by the product of the average reactant concentrations

kµ = �xixj⇥V cµ/ �xi⇥ �xj⇥

Comparing reaction parameters to reaction rate constants

The deterministic formulation imposes

�xixj⇥ = �xi⇥ �xj⇥

thus neglecting fluctuations              and correlations       (i = j) (i �= j)

kµ = V cµ

This relationship changes for each reaction type depending on the form of      , 
representing the distinct reactant combinations for reaction type

We therefore find for this particular reaction type Rµ

hµ
Rµ

D.T. Gillespie, J Comput Phys, 22, 403-434,1976
D.T. Gillespie, J Phys Chem, 81, 2340-2361, 1977
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